- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Uniqueness in Determining a Ball with a Single Incoming Wave
Commun. Math. Res., 33 (2017), pp. 143-148.
Published online: 2019-11
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-33-143,
author = {Liu , Juan and Zhang , Jie},
title = {Uniqueness in Determining a Ball with a Single Incoming Wave},
journal = {Communications in Mathematical Research },
year = {2019},
volume = {33},
number = {2},
pages = {143--148},
abstract = {
We prove that a ball with the impedance boundary condition is uniquely determined by the far-field pattern corresponding to an incident plane wave at one given wavenumber and one given incident direction. In the uniqueness proof, the impedance parameter in the impedance boundary condition is unknown.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2017.02.06}, url = {http://global-sci.org/intro/article_detail/cmr/13394.html} }
TY - JOUR
T1 - Uniqueness in Determining a Ball with a Single Incoming Wave
AU - Liu , Juan
AU - Zhang , Jie
JO - Communications in Mathematical Research
VL - 2
SP - 143
EP - 148
PY - 2019
DA - 2019/11
SN - 33
DO - http://doi.org/10.13447/j.1674-5647.2017.02.06
UR - https://global-sci.org/intro/article_detail/cmr/13394.html
KW - inverse obstacle scattering, uniqueness, ball, impedance boundary condition, Helmholtz equation
AB -
We prove that a ball with the impedance boundary condition is uniquely determined by the far-field pattern corresponding to an incident plane wave at one given wavenumber and one given incident direction. In the uniqueness proof, the impedance parameter in the impedance boundary condition is unknown.
Liu , Juan and Zhang , Jie. (2019). Uniqueness in Determining a Ball with a Single Incoming Wave.
Communications in Mathematical Research . 33 (2).
143-148.
doi:10.13447/j.1674-5647.2017.02.06
Copy to clipboard