- Journal Home
- Volume 18 - 2026
- Volume 17 - 2025
- Volume 16 - 2024
- Volume 15 - 2023
- Volume 14 - 2022
- Volume 13 - 2021
- Volume 12 - 2020
- Volume 11 - 2019
- Volume 10 - 2018
- Volume 9 - 2017
- Volume 8 - 2016
- Volume 7 - 2015
- Volume 6 - 2014
- Volume 5 - 2013
- Volume 4 - 2012
- Volume 3 - 2011
- Volume 2 - 2010
- Volume 1 - 2009
Adv. Appl. Math. Mech., 18 (2026), pp. 222-241.
Published online: 2025-10
Cited by
- BibTex
- RIS
- TXT
In this paper, a pointwise goal-oriented residual-based a posteriori error estimator is proposed for linear elliptic equations with restricted source terms. The pointwise error is directly estimated by introducing the dual problem with a Dirac delta source term instead of using classical mollification technique. The goal-oriented error estimator is proved to be the upper bound of the pointwise error. Numerical experiments show the advantage of the adaptive finite element method (AFEM) based on this error estimator, which can preserve the monotonicity of the pointwise error, compared with the goal-oriented AFEM using the mollification technique.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2023-0186}, url = {http://global-sci.org/intro/article_detail/aamm/24525.html} }In this paper, a pointwise goal-oriented residual-based a posteriori error estimator is proposed for linear elliptic equations with restricted source terms. The pointwise error is directly estimated by introducing the dual problem with a Dirac delta source term instead of using classical mollification technique. The goal-oriented error estimator is proved to be the upper bound of the pointwise error. Numerical experiments show the advantage of the adaptive finite element method (AFEM) based on this error estimator, which can preserve the monotonicity of the pointwise error, compared with the goal-oriented AFEM using the mollification technique.