- Journal Home
- Volume 18 - 2026
- Volume 17 - 2025
- Volume 16 - 2024
- Volume 15 - 2023
- Volume 14 - 2022
- Volume 13 - 2021
- Volume 12 - 2020
- Volume 11 - 2019
- Volume 10 - 2018
- Volume 9 - 2017
- Volume 8 - 2016
- Volume 7 - 2015
- Volume 6 - 2014
- Volume 5 - 2013
- Volume 4 - 2012
- Volume 3 - 2011
- Volume 2 - 2010
- Volume 1 - 2009
Adv. Appl. Math. Mech., 18 (2026), pp. 109-113.
Published online: 2025-10
Cited by
- BibTex
- RIS
- TXT
Based on the generalized scalar auxiliary variable approach and vector penalty projection method, some fully discrete schemes with first- and second-order accuracy in time direction are constructed for solving the incompressible magnetohydrodynamic model. It is a combination of mixed finite element approximation for spatial discretization and first-order backward Euler/second-order backward differential formula for temporal discretization. The proposed schemes own several features: it decouples unknown physical variables and linearizes the nonlinear terms, then it only needs to solve some linear equations at each temporal level; although the divergence of numerical velocity is not exactly equal to zero, it can approximately meet the mass conservation when one takes small penalty parameter; while the computation of the velocity and pressure are decoupled, numerical results show that the velocity and pressure can reach second-order accuracy in time. The resulting schemes are supported by numerical analysis and simulation.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2023-0325}, url = {http://global-sci.org/intro/article_detail/aamm/24521.html} }Based on the generalized scalar auxiliary variable approach and vector penalty projection method, some fully discrete schemes with first- and second-order accuracy in time direction are constructed for solving the incompressible magnetohydrodynamic model. It is a combination of mixed finite element approximation for spatial discretization and first-order backward Euler/second-order backward differential formula for temporal discretization. The proposed schemes own several features: it decouples unknown physical variables and linearizes the nonlinear terms, then it only needs to solve some linear equations at each temporal level; although the divergence of numerical velocity is not exactly equal to zero, it can approximately meet the mass conservation when one takes small penalty parameter; while the computation of the velocity and pressure are decoupled, numerical results show that the velocity and pressure can reach second-order accuracy in time. The resulting schemes are supported by numerical analysis and simulation.